Diffusion mechanism of lithium ion through basal plane of layered graphene.
نویسندگان
چکیده
Coexistence of both edge plane and basal plane in graphite often hinders the understanding of lithium ion diffusion mechanism. In this report, two types of graphene samples were prepared by chemical vapor deposition (CVD): (i) well-defined basal plane graphene grown on Cu foil and (ii) edge plane-enriched graphene layers grown on Ni film. Electrochemical performance of the graphene electrode can be split into two regimes depending on the number of graphene layers: (i) the corrosion-dominant regime and (ii) the lithiation-dominant regime. Li ion diffusion perpendicular to the basal plane of graphene is facilitated by defects, whereas diffusion parallel to the plane is limited by the steric hindrance that originates from aggregated Li ions adsorbed on the abundant defect sites. The critical layer thickness (l(c)) to effectively prohibit substrate reaction using CVD-grown graphene layers was predicted to be ∼6 layers, independent of defect population. Our density functional theory calculations demonstrate that divacancies and higher order defects have reasonable diffusion barrier heights allowing lithium diffusion through the basal plane but neither monovacancies nor Stone-Wales defect.
منابع مشابه
Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries
Non-annealed graphene paper, prepared via reduction of prefabricated graphene oxide paper with hydrazine hydrate, was employed as the sole component of a binder-free lithium-ion battery anode, circumventing the polymer binders and other additives required for the fabrication of conventional electrodes. The binder-free anode fabricated from this non-annealed paper possessed excellent cyclability...
متن کاملLithium Diffusion in Graphitic Carbon
Graphitic carbon is currently considered the state-of-the-artmaterial for the negative electrode in lithium ion cells, mainly due to its high reversibility and low operating potential. However, carbon anodes exhibit mediocre charge/ discharge rate performance, which contributes to severe transport-induced surface structural damage upon prolonged cycling and limits the lifetime of the cell. Lith...
متن کاملLi diffusion through doped and defected graphene.
We investigate the effect of nitrogen and boron doping on Li diffusion through defected graphene using first principles based density functional theory. While a high energy barrier rules out the possibility of Li- diffusion through the pristine graphene, the barrier reduces with the incorporation of defects. Among the most common defects in pristine graphene, Li diffusion through the divacancy ...
متن کاملMechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy.
Recently emerging potassium ion (K-ion) batteries offer a lower-cost alternative to lithium-ion batteries while enabling comparably high storage capacity. Here, we leverage the strong Raman spectroscopic response of few-layered graphene to provide the first insight into the electrochemical staging sequence for K+ ions in graphitic carbons. Our analysis reveals the signature of a dilute stage I ...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 134 20 شماره
صفحات -
تاریخ انتشار 2012